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TESTING OR FAULT-FINDING FOR
RELIABILITY GROWTH:

A MISSILE DESTRUCTIVE-TEST EXAMPLE

D. P. GAVER

P. A. JACOBS

Department of Operations Research
Naval Postgraduate School

Monterey, CA 93943

ABSTRACT

A new piece of equipment has been purchased in a lot of size m.

Some of the items can be used in destructive testing before the item

is put into use. Testing uncovers faults which can be removed from

the remaining pieces of equipment in the lot. If t < m pieces of

equipment are tested, then those that remain, mt = m - t, have

reduced fault incidence and are more reliable than initially, but mt

may be too small to be useful, or than is desirable. In this paper

models are studied to address this question: given the lot size m,

how to optimize by choice of t the effectiveness of the pieces of

equipment remaining after the test. The models used are simplistic

and illustrative; they can be straightforwardly improved.

Key words: Reliability growth; Bayesian sequential analysis; Poisson process;

destructive testing; how much testing is enough; operational testing

1. Problem Setting

A new piece of equipment has been produced, and is to be tested before being

put into use. An example is a military missile. Ultimate testing is done

destructively by firing shots. The objective is to send equipment to the field with



as few (design) faults as possible, so testing is focused on finding faults and

removing them; it will be assumed here that once a fault is discovered it can be

removed by change of design or componentry, and hence that a mode of failure

has been permanently removed from all remaining missiles. The problem: if

missiles are bought in lots of m, and t < m are tested, then those that remain, mt =

m - t, have reduced fault incidence and are more reliable (the lot or design has

experienced "reliability growth"), but mt may be too small to be useful, or than is

desirable.

We address two problems.

(a) Given the lot size, m, how to optimize the effectiveness or lethality of the

missiles remaining after t(< m) are tested by choice of t;

(b) In the light of a testing program of length t, how does t depend upon m; or

how does lot size affect the final product's quality, where quality measures

the probability of overall success in use? This means that both reliability and

other suitability measures are combined with accuracy and target destination

probability and other effectiveness measures to obtain an overall success

probability when the missile is fired. The focus is entirely on maximizing

operational capability, given the lot size, m. Other calculations can be made to

address questions of final, after-test, missile adequacy to meet military needs

particularly when compared to alternative, e.g. currently employed, options.

The question of characterizing the uncertainty with which such a comparison

is made is not thoroughly addressed here.

Related issues arise in reliability growth testing; cf. Ascher and Feingold

(1984), Balaban (1978), Barlow and Scheuer (1966), Barr (1970), Bhattacharyya et

al. (1989), Calabria et al. (1992), Fries (1993), Gross et al. (1968), Jayachadran et al.

(1976), Mazzuchi et al. (1993), Olsen (1977), Pollock (1968), and Woods (1990).
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However, in traditional reliability growth testing, there is no constraint on the

number of tests allowed.

2. Initial Mathematical Model

Suppose a missile design initially contains Do potential bugs or faults. If

present, each of these independently inactivates a missile flight with probability

p, or does not operate detrimentally with probability 1 - p. It is a considerable

simplification to assume that p is the same for all fault/bug types, and that p does

not depend on flight time or other conditions, but this simplification allows a

quick initial evaluation. Note that if m missiles are built as described, never

tested but fired, then the number, So, of (later) successful flights is, given Do,

distributed binomially with probability of success (1 - p)Do; consequently its

expectation is

E[SOIDO] = SM(I _ P)Do, (2.1)

where s is the probability that a missile with no serious faults survives and

operates properly. Various other meaningful measures can also be evaluated.

2.1 Testing

Suppose t missiles are test-fired. If some fail it is presumed that (a) the

particular faults causing failure are identifiable, and (b) that they are successfully

removed from the remaining missiles, leaving m - t as yet unfired and potentially

useful in actual operations. Furthermore, these are now more reliable, but there is

obviously a tradeoff involved in the choice of t. Thus after t are tested (2.1) turns

into

E[StIDt] = s(m - t)(1 - p)Dt (2.2)
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where Dt is the number of potential faults remaining after t test firings. It is

assumed that we are only removing single "root-cause faults" that can

themselves bring about missile failure, whereas there actually could be a

complicated interlocking sequence of fault failures, and a postmortem could

possibly identify them, leading to their simultaneous removMl. This optimistic

situation is disregarded here. We also represent, in the parameter s, the influence

of non-removable faults: items that simply fail but cannot be design-rectified.

Existence of such can slow down the reliability growth process by stimulating

search for the unattainable. For the present this bit of realism is ignored, as is the

possibility that identification of a removable fault leads to replacement by an

item of higher p-value than that replaced! The present model is optimistic in that

a new item is essentially compatible with s, not changing it by much.

2.2 Property of a Test of Fixed Length, t

In order to choose the test period, t, one can compute the expected value of

those that survive later (active, combat) flights. This entails removal of the

condition on Dt in (2.2); one can then pick the t-value so as to maximize that

expectation. This is one answer to '"ow much is enough testing" in the present

context.

Suppose Do bugs/faults are originally present and we ask how many are

present after time t. The probability that any one is still present is (1 - p)t; by

independence Dt is binomial:

P{Dt = kjDo} = ~D~(,)( ~~ - -(1- P)t)k (2.3)

with generating function

E[zDt IDo] = (Z(1 - + (1--(1--p)t))Do. (2.4)
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In turn, the condition on Do can be removed; if gDo (z) is the generating function

of Do then

E[ZDt] g90 1(1-Pf (i1t-i)) (2.5)

In Subsection 2.3 we consider Poisson-seeded potential faults. In Subsections

2.5 and 2.6 we consider potential faults having a discrete uniform distribution

and a discrete uniform distribution with a random range.

2.3 Potential Faults are Poisson-Seeded

If Do is assumed Poisson with mean X then directly it is seen that Dt is Poisson

with mean A(1 -p)t, which has generating function

E[zDt ] = e-;L(1-p)t (1-z) (2.6)

and (2.2), the expected number of successful missions after testing for time t

(where 0O< t5 <m):

E[St] = s(m - t)e-;P(1-P)t. (2.7)

Thus if all parameters (except s) are known, or estimated, we can discover the

value of t = topt(m) that maximizes the expected number of missiles sent to the field

that will function properly in use. Thus we have an initial approach to a

particular problem of pre-determining test duration so as to "optimize" a

candidate measure of mission success.

Note that the distribution of Do can be regarded as a Bayes prior on an

unknown parameter. Then the prior's parameter, A, can be obtained by

combining expert judgment and data on previous tested and fielded comparable

systems. This prior can be updated with each test episode using Bayesian

procedures. This approach is explored in Section 3.
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2.4 A Max-Min Policy for Poisson-Seeded Faults

Suppose nature is malevolent and for any number of tests conducted will

choose p so as to minimize the expected number of successes after performing t

tests. Let s = 1, and assume Do is Poisson with mean ,I Let

f(p) = lnE[St]
(2.8)

= ln(m - t) ,(1- p)tp.(2

dpSetting •pp-f(p) = 0 and solving for p results in the minimizing p, pmin = 1/(1 + t).

For this value of p

Emin[St] = (m- t)exp{-j -j i-} (2.9)

A criterion to choose the number of missiles to test is to pick the number of tests,

t, that maximizes the above. We will call this policy the max-min policy. Such a

number must be found numerically; it is of interest to compare its implications to

those of other procedures.

2.5 Alternate Potential Fault-Seeding Distribution

It is plausible that if a system reaches later testing stages its propensity to

contain many faults is low. Perhaps it is a modification of a previous design (an

upgrade in military parlance) with only a few subsystems being candidates for

serious faults. In this case the Poisson model, which admits arbitrarily many

faults, might well be replaced by one that absolutely limits the number of active

faults, so we investigate one of the simplest alternatives: a discrete uniform for Do

over (0, 1, 2, ... , d). Other features remain as before.

The generating function of the discrete uniform is

1 1 -zd+1

gDo W = d1Y+1)- z) (2.10)
6=O



so

E[St] s(m - t) 1 (I (-P)tp) ] (2.11)

For numerical illustration we match means to that of the Poisson: d/2 = ),; this

will not always be possible for small A since d/2 Ž 1/2. To compare the expected

number of successful missions after testing using t missiles for the Poisson fault-

seeding model and the discrete uniform fault-seeding model first consider the

functions

fE(jll= e--fa = 1 -dja+1(dal .. (2.12)

2 2 2

and
fu ( P ) = - [ -( aa)jl+l.

d1 a1  ~ 1

d+1 a k=1 k (2.13)

where a ; (1 - p)tp. Thus, for a reasonably small a = (1 - p)tp, the expected number

of successful missions after testing will be approximately the same for both

models. Examine the numerical examples to follow to see that choice of the

prior's specific form may be of secondary effect.
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2.6 Second Alternative for Fault-Seeding: Discrete Uniform with Random

Range

Suppose the previous setup is generalized by letting d, the range of the

uniform, be another arbitrary discrete distribution, denoted (pk; k = 0, 1, 2,...},

e.g., but not necessarily Poisson. From (2.10)

1 11

so

1001
E[zDO]1 1 k

where p(w) is the generating function of {Pk}.

If p(w) = -1-w), Poisson, then we get

E -zDO] l =kY Pk(- ) i (2.16)
11

Now introduce z = 1 - (1 - p)tp as before:

E[(1 - p -= (1_ e-IP(1-p) . (2.17)

In order to match means it is easiest to calculate

E[Do0l] = d/2 so : = 2E[Do]. (2.18)

Thus, substituting (2.18) into (2.17) for EIDo] = d/2 and letting a = p(l - p)t results

in

E[(l - (2.19)
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Comparing (2.19) and (2.12), it is seen that the expected number of successful

missions after testing for the Poisson fault-testing model will be less than that for

the discrete uniform with Poisson random range.

2.7 Numerical Illustrations and Implications

The meaning of (2.7) is revealed by studying some special cases. Figures 1 - 2

suggest that while the optimal value of test time certainly depends upon the

parameter values, which are unknown or must be estimated, the optimum values

remain in a relatively narrow range, at least over the range of parameter values

studied. For what seems to be plausible values the numbers proposed for test are

a smallish fraction of lot size, m. There is a helpful general insight: if p, the

probability of fault activation, is relatively large then a relatively small test tends

to remove many potential faults, leaving the field reliability high, whereas a

smaller p-value requires somewhat, but not substantially many, more, since

leaving low-probability offenders in place is relatively undamaging. The max-

min policy for ;L = 5 and m = 100 is to test 13 missiles with resulting expected

number of successes 75.9. The max-min policy for A = 5 and m = 500 is to test 29

missiles with resulting expected number of successes 442.5. Figures 1 -2 show

that the max-main policy is (not surprisingly) somewhat conservative.

3. Sequential Destructive Testing: Myopic Bayesian Updating

With the exception of the max-min analysis given in Section 2.4, the previous

analysis assumes that the design defect failure probability, p, is known, or at least

that its value may be satisfactorily approximated off-line from data for analogous

systems, and then treated as "known". Suppose, however, that data are available

sequentially on the number of design defects that were revealed on an initial set

of t E (1, 2, ... ) test firings of the missile in question. We show that such data can
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be used to provide a sequentially updated inference concerning p, and thus to

decide when further testing is not justified. In Subsection 3.2 we discuss a

criterion which compares the expected number of successes with the current

posterior distribution of p with that if we look forward to doing one more test. In

Subsection 3.3 we discuss the criterion which is to test until all remaining

(untested) missiles will be successful with a preselected probability. The problem

we discuss is related, but not identical to, much work on sequential sampling and

decision making. See in particular Chernoff and Ray (1965), and Chernoff (1966);

Yang et al. (1982) is also related.

The method described depends on these factors inherent in the basic model:

Do = the initial number of design defects that exist in the missile system.

0 = the probability a fault causes a failure in a missile.

B1 = the number of faults discovered by the first test. Assume all the faults
are repaired upon discovery.

As previously, let m be the total number of missiles.

Assume

P{B1 = :b 1D0 = do,O = p}: = (,)pbi(1-p)dO-bI b, = 0,...,do; (3.1)

P{Do = do} = edo, do=0, 1,... (3.2)

P{E r dp} = f(p)dp. (3.3)

Then

Pit'(= dp, B1 = bl,D0 =Qdo = f(p)e-1Pp)b1 [,ý(1- p)]d0-ble"1P p 34e~P~p~b [a1 -)]d1~Ie-;(1-p)

• (do-b1)fpdp. (3.4)

Let D1 = Do - B1, the number of remaining faults; then from (3.4) it follows that

10



S)]dI

P{ OE dp, B1 = bl,D1 = d} = f(p)e-P (p)bl e-;(1-p) [,(1p- dp
bl ! dl !

and

P{O E dp,D1 = dlIB1 = b1} K(bj)f(p)e-AP(Ap)k [a(1 - p (3.5)

..6a=l! dp (3.5)

where K(bl) = f(p)e-PppbIddp]

Similarly,

P{O C dp,B 1 = blB 2 = b2,.. .,Bk = bk,Dk = dk}

= f(p)e-_P b e_(lp)p 1 p)p]b2 1 x....l b2! (3.6)

xe-(1P}kP e--• P)k-lp]bk e.(1-p)k [~k(lk k dp

bk! -dk!

where Dk = Do - (B1 +... + Bk), the number of remaining faults after k tests.

3.1 The Expected Number of Successes after t Tests

A missile is called a success if no faults occur during its launch or flight. Let

So = the number of successful missiles if no testing is done; (no faults are fixed).

Then

11



E[So] = E[E[SoIDo,O]]

= mJ p)d° e- f(p)dp
o do=O

1 00 a -2 P)]dO-
= mJl e do1 f(p)dp (3.7)

0 d0=0

1
= Mfe-APf(p)dp.

0

Suppose one test is done and B1 = bl faults are discovered and repaired; let S1

be the number of successes in the remaining (m - 1) missiles.

E[SIIB1 = bl]= (m - 1)J (1- p)doe-L(1-P) [ d(o- K(pj)f(p)e-P (Ap)b dp
(3.8)

1

(m - 1)f e-;(1-P)PK(b1 )f(p)e-;P (Ap)bl dp.
0

Similarly, if k tests are conducted and Bi faults are discovered and repaired on

the ith test, the expected number of successes in the remaining (m - k) missiles is

E[SkIB = bl,.. .,Bk = bk]

1 k(3.9)

= (m - k)k PK(bl,...,bk)f(p; bl,...bk)dp

0

where

f(p; bl,.. .bk)

- (2)bl ('-)p [g(1 - [z(i - p)k-1 p]bk

fp ' b2! bk!

and

12



101
3.2 The Expected Number of Successes After Looking Forward to Doing One

More Test

Before any tests are conducted consider the expected number of successes if

one test were conducted. Let S+ be the number of successes using the remaining

(m - 1) missiles. From (3.4)

E[St;B b,6 0 =(-,p b! 1 (1- p)S s! - )]S e-(1-P)dp
s=0 (3.10)

= (m - 1)f(p) eb'(.P)b exp{-2;,(1 - p)p}dp.

Thus,

E[St;O dp] = (m - 1)f(p)exp{-A(1 - p)p}dp (3.11)

1
E[St] = (m - 1)ff(p)exp{-,(1 - p)p}dp. (3.12)

0

Suppose k tests have been done which resulted in B 1 = bl, ... , Bk = bk faults

being discovered and repaired. Consider the expected number of successes if one

more test were conducted. Let S+ be the number of remaining successes if

another test is conducted. From (3.6) it follows that

E[Sk ;Bl = bl,B 2 = b2 ,...,Bk = bk,O E dp]

= (m-(k + 1))f(p;bl,...,bk)dp exp{-2L(1- p)kp} (3.13)

where

13



f(p;bl,...,bk)

f&~e-'(pb eA(1P)P [aL(i _ P)I2 , k-lp[I r(l )k1lp]bk (3.14)
11 b2! bk!

E[Skl, = bl,B 2 = b2'...,,Bk ]= ]

(m - (k + 1))f f(p; bl,..,bk)exp{-f;(1 - p)kpldp (315)
0 1

f f (p;bl,. .. bk P

0

A stopping rule might be to stop testing at tB tests where

tB = rfllnik: E[SkIBl = bp,...,Bk = bk] > E[Sk+IB 1 = bpl,...,Bk = bk] + C]1

where C is a constant chosen by the analyst; possibly C = 0. We will call this rule

the (myopic) Bayes rule.

3.3 The Probability of No Failure in the Remaining Missile Firings After

Conducting t Tests

An alternative procedure is to test until all remaining (untested) missiles will

be successful with a preselected probability. After t tests, 0 < t < m, the proba-

bility all the remaining missiles are successes is

P{Sm-t = m - t} = 0e0 (1P) t [1(1_p)t]k Pklm-t

k=O k! - (3.16)

= ex+ ;*,( - - (1 - ) M-t]

if p and It, are known.

14



If I, is known but p is not known, then

P{Sm-t = m- t,Bi =bl,...,Bt = bt,Dt = k,O e dpl

= f(p;b,b 2 ... ,bt)(1 -P))k(m-t) C - [P()t _ dp (3.17)

k! d

where

Thusf(p;bb 2 -,bt) = f(p)e-P bl! b2! x ...-x bt!

Thus,

P{Sm-t = m- t, B1 = bl,...,Bt = bt,0 e dp}

= f (p; blb 2 . .bt) exp{-,X(1 - p)t [1 - (i - ) t]dp(3.18)

and

P{Sm.-t = m- tjB1 = bl,...,Bt = bt}

Kf f(p; bl,..., bt) exp{-.a(1 - P)t [1 - (1- (3.19)
0

where K = p;bj,...,bt

A rule to stop testing may be to do tp tests where

tp = min{k: P{Sm-k = m - kjB 1 = bl,...,Bk = bk} > a} (3.20)

where a = 0.8, or 0.9, etc.

Numerical integration is required to carry out the above procedures, e.g. to

evaluate integrals in (3.8), (3.9), (3.12), (3.15) and elsewhere. We have used

Simpson's rule with up to 10th order difference correction for a step size h:0.0001

(cf. Hamming (1973)) as implemented in A Graphical Statistical System, AGSS.
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3.4 Numerical Examples

Figure 3 presents the expected number of successful missile flights after

having conducted t tests as a function of t for a series of design fault discovery.

There are three faults. One fault is discovered at test 3; one at test 4; and one at

test 6; if -no tests are conducted, the number of faults discoveiedis 0. The prior

distribution of the number of faults at time 0 is assumed to be a Poisson

distribution with mean A = 3. The prior distribution for the probability of fault

discovery, 0, is uniform over [0, 1]. The number of missiles in the lot m = 25. The

solid line plots the expected number of successes with no additional tests, (3.7) -

(3.9). The dotted line plots the expected number of successes if one additional test

is considered (3.15). The dashed line plots the expected number of successes if a

fixed number of tests are conducted for A = 3 and probability of discovery

having the prior distribution, that is, from (2.7),

E[St] = (m - t)e"P(1-P)f(p)dp. (3.21)
0

A criterion which maximizes the expected number of successes for a fixed

number of tests would stop testing after 4 tests. A criterion which stops testing

when doing one more test would not result in a larger expected number of

successes would also stop after test 4. Both criteria would miss the one fault that

does not appear until test 6. The max-min policy obtained using (2.9) for m = 25

and A = 3 would also test 4 missiles.

Figure 4 displays plots of the probability that all (m - t) remaining missiles are

successes after conducting t tests. There are 25 missiles initially. The prior

distribution of the initial number of faults is Poisson with mean 3. The prior

distribution for the discovery probability is uniform over [0, 1]. The solid line

displays the probability of all remaining missiles being successes as a function of

16



the number of tests using the same fault discovery series and (3.19) using the

posterior distribution of the discovery probability. The dotted line is the

probability of all remaining missiles being successes as a function of the number

of tests using the prior distribution of the discovery probability (fixed number of

tests)

1 ;L(I- ,trl_•l_ )m-tl

P{st =m t-=fe_ P)[1(1P) ]f(p)dp. (3.22)
0

Consider the decision rule to test until the probability that all remaining

missiles are successes is at least y for y= 0.8. For the uniform prior, the fixed

number of tests calculation would test 6. The Bayes calculation would test 12.

Both criteria recommend a larger number of tests than the expected number of

successes criteria.

4. Discussion

Our model directly addresses a real challenge faced by the testing

community: to test efficiently with operational needs in mind. The present

formulation is limited and simplified, but suggests the kinds of results to be

expected, and that can be practically obtained. In particular the max-min

approach (Sec. 2.4) provides a conservative assessment of a defensible

conservative number of tests that one might consider making. This approach is

quite robust to aspects of the model formulation (it actually accommodates

different fault failure probabilities). The sequential myopic Bayes approach

(Sec. 3) justifies adjustment of test effort to actual data obtained; it probably

requires further detailed development before being practically applicable, but the

needed modifications are understood, and are being made.
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Implementation of the present approach requires a certain amount of

computing, all within the range of desktop PCs or laptops. It is likely that user-

friendly spreadsheet realizations of the current software can be developed.
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